STAT 2593
 Lecture 008 - Conditional Probability

Dylan Spicker

Conditional Probability

Learning Objectives

1. Understand what conditional probability is, and how to compute it.
2. Understand the multiplication rule for probability.
3. Understand the law of total probability.
4. Understand Bayes' Theorem and its use cases.

Conditional Probability

- Sometimes, when we want to know $P(A)$, we have extra information (about B).

Conditional Probability

- Sometimes, when we want to know $P(A)$, we have extra information (about B).
- We can ask what is the probability that A occurs, given that we know B has occurred?

Conditional Probability

- Sometimes, when we want to know $P(A)$, we have extra information (about B).
- We can ask what is the probability that A occurs, given that we know B has occurred?
- This is called the conditional probability of A given B.

Conditional Probability

- Sometimes, when we want to know $P(A)$, we have extra information (about B).
- We can ask what is the probability that A occurs, given that we know B has occurred?
- This is called the conditional probability of A given B.
- We write this as $P(A \mid B)$.

Conditional Probability

- Sometimes, when we want to know $P(A)$, we have extra information (about B).
- We can ask what is the probability that A occurs, given that we know B has occurred?
- This is called the conditional probability of A given B.
- We write this as $P(A \mid B)$.
- When we know that B has occurred, the relevant sample space is no longer \mathcal{S}, but rather B.

Conditional Probability

- Sometimes, when we want to know $P(A)$, we have extra information (about B).
- We can ask what is the probability that A occurs, given that we know B has occurred?
- This is called the conditional probability of A given B.
- We write this as $P(A \mid B)$.
- When we know that B has occurred, the relevant sample space is no longer \mathcal{S}, but rather B.
- What is the probability that a random selected card is the ace of spades?

Conditional Probability

- Sometimes, when we want to know $P(A)$, we have extra information (about B).
- We can ask what is the probability that A occurs, given that we know B has occurred?
- This is called the conditional probability of A given B.
- We write this as $P(A \mid B)$.
- When we know that B has occurred, the relevant sample space is no longer \mathcal{S}, but rather B.
- What is the probability that a random selected card is the ace of spades?
- What if you know that the selected card was black?

Conditional Probability

- Sometimes, when we want to know $P(A)$, we have extra information (about B).
- We can ask what is the probability that A occurs, given that we know B has occurred?
- This is called the conditional probability of A given B.
- We write this as $P(A \mid B)$.
- When we know that B has occurred, the relevant sample space is no longer \mathcal{S}, but rather B.
- What is the probability that a random selected card is the ace of spades?
- What if you know that the selected card was black?
- Now $N=26$.

Conditional Probability

- Sometimes, when we want to know $P(A)$, we have extra information (about B).
- We can ask what is the probability that A occurs, given that we know B has occurred?
- This is called the conditional probability of A given B.
- We write this as $P(A \mid B)$.
- When we know that B has occurred, the relevant sample space is no longer \mathcal{S}, but rather B.
- What is the probability that a random selected card is the ace of spades?
- What if you know that the selected card was black?
- Now $N=26$.
- What if you know that the selected card was an ace?

Conditional Probability

- Sometimes, when we want to know $P(A)$, we have extra information (about B).
- We can ask what is the probability that A occurs, given that we know B has occurred?
- This is called the conditional probability of A given B.
- We write this as $P(A \mid B)$.
- When we know that B has occurred, the relevant sample space is no longer \mathcal{S}, but rather B.
- What is the probability that a random selected card is the ace of spades?
- What if you know that the selected card was black?
- Now $N=26$.
- What if you know that the selected card was an ace?
- Now $N=4$.

Conditional Probability and the Multiplication Rule

- To compute the conditional probability, we use

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

Conditional Probability and the Multiplication Rule

- To compute the conditional probability, we use

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- If $P(B)=0$, then this probability is undefined.

Conditional Probability and the Multiplication Rule

- To compute the conditional probability, we use

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- If $P(B)=0$, then this probability is undefined.
- This can be re-arranged for the multiplication rule which states

$$
P(A \cap B)=P(A \mid B) P(B)
$$

The Law of Total Probability

- Suppose that you partition the state space, \mathcal{S}, into $A_{1}, A_{2}, \ldots, A_{k}$.

The Law of Total Probability

- Suppose that you partition the state space, \mathcal{S}, into $A_{1}, A_{2}, \ldots, A_{k}$.
- That is, the A_{j} are disjoint, and exhaustive, so that $\mathcal{S}=A_{1} \cup A_{2} \cup \cdots A_{k}$ and $A_{\ell} \cap A_{j}=\emptyset$.

The Law of Total Probability

- Suppose that you partition the state space, \mathcal{S}, into $A_{1}, A_{2}, \ldots, A_{k}$.
- That is, the A_{j} are disjoint, and exhaustive, so that $\mathcal{S}=A_{1} \cup A_{2} \cup \cdots A_{k}$ and $A_{\ell} \cap A_{j}=\emptyset$.
- Then we can use the multiplication rule and additivity to write

$$
P(B)=\sum_{j=1}^{k} P\left(B \mid A_{j}\right) P\left(A_{j}\right)
$$

The Law of Total Probability

- Suppose that you partition the state space, \mathcal{S}, into $A_{1}, A_{2}, \ldots, A_{k}$.
- That is, the A_{j} are disjoint, and exhaustive, so that $\mathcal{S}=A_{1} \cup A_{2} \cup \cdots A_{k}$ and $A_{\ell} \cap A_{j}=\emptyset$.
- Then we can use the multiplication rule and additivity to write

$$
P(B)=\sum_{j=1}^{k} P\left(B \mid A_{j}\right) P\left(A_{j}\right)
$$

- This is called the law of total probability.

The Law of Total Probability

- Suppose that you partition the state space, \mathcal{S}, into $A_{1}, A_{2}, \ldots, A_{k}$.
- That is, the A_{j} are disjoint, and exhaustive, so that $\mathcal{S}=A_{1} \cup A_{2} \cup \cdots A_{k}$ and $A_{\ell} \cap A_{j}=\emptyset$.
- Then we can use the multiplication rule and additivity to write

$$
P(B)=\sum_{j=1}^{k} P\left(B \mid A_{j}\right) P\left(A_{j}\right)
$$

- This is called the law of total probability.
- Often easier to count conditional probabilities rather than marginal probabilities directly.

Bayes' Theorem

- Combining these results together gives the most famous formula in probability, Bayes' Theorem

Bayes' Theorem

- Combining these results together gives the most famous formula in probability, Bayes' Theorem
- Bayes' Theorem lets us take information about the conditional distribution of $A \mid B$ and get information about $B \mid A$.

Bayes' Theorem

- Combining these results together gives the most famous formula in probability, Bayes' Theorem
- Bayes' Theorem lets us take information about the conditional distribution of $A \mid B$ and get information about $B \mid A$.
- Specifically, we can write that

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{P(A \mid B) P(B)}{\sum_{j=1}^{k} P\left(A \mid B_{j}\right) P\left(B_{j}\right)}
$$

Bayes' Theorem

- Combining these results together gives the most famous formula in probability, Bayes' Theorem
- Bayes' Theorem lets us take information about the conditional distribution of $A \mid B$ and get information about $B \mid A$.
- Specifically, we can write that

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{P(A \mid B) P(B)}{\sum_{j=1}^{k} P\left(A \mid B_{j}\right) P\left(B_{j}\right)} .
$$

- For instance...

Bayes' Theorem

- Combining these results together gives the most famous formula in probability, Bayes' Theorem
- Bayes' Theorem lets us take information about the conditional distribution of $A \mid B$ and get information about $B \mid A$.
- Specifically, we can write that

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{P(A \mid B) P(B)}{\sum_{j=1}^{k} P\left(A \mid B_{j}\right) P\left(B_{j}\right)}
$$

- For instance. .
- How likely is it to have a rare disease if you test positive for it?

Bayes' Theorem

- Combining these results together gives the most famous formula in probability, Bayes' Theorem
- Bayes' Theorem lets us take information about the conditional distribution of $A \mid B$ and get information about $B \mid A$.
- Specifically, we can write that

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{P(A \mid B) P(B)}{\sum_{j=1}^{k} P\left(A \mid B_{j}\right) P\left(B_{j}\right)}
$$

- For instance. .
- How likely is it to have a rare disease if you test positive for it?
- How likely is an email to be spam, given that it was detected by the filter?

Summary

- Conditional probabilities consider information that we already know.
- Conditional probabilities give rise to the multiplication rule, and the law of total probability.
- These tools help to compute marginal probabilities.
- Bayes' Theorem allows us to "update our view" on the world, by combining conditional probability with the multiplication rule.

